РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Устройство сопряжения ДУТ light

Оглавление

Ог	лавление	2
1.	Назначение	3
2.	Технические характеристики и условия эксплуатации	4
3.	Комплект поставки	6
4.	Принцип работы	6
5.	Правила эксплуатации	8
6.	Настройка и конфигурирование УС ДУТ	10
7.	Техническое обслуживание	17
8.	Маркировка	17
9.	Транспортирование и хранение	17
ΓА	РАНТИЙНЫЙ ТАЛОН №	18

1. Назначение

Устройство сопряжения датчика уровня топлива версии light (далее УС ДУТ) предназначено для сопряжения одного датчика уровня топлива с показывающим прибором (штатной комбинацией приборов) транспортного средства (далее TC).

УС ДУТ выпускается в двух модификациях: частотный и аналоговый. Частотный УС ДУТ используется совместно с ДУТ имеющими частотный выход, аналоговый УС ДУТ – совместно с ДУТ имеющими аналоговый выход.

Рисунок 1 – Внешний вид УС ДУТ

УС ДУТ частотный			
Наименование	Значение		
Питание			
Напряжение питания, В	1030		
Ток потребления, мА	до 50		
Характеристики частотного вх	ода		
Тип входного сигнала	частотный		
Частота регистрируемых сигналов на входе, Гц	от 500 до 1500		
Характеристики выходов			
Выход 1 (УКАЗАТЕЛЬ ТОПЛИВ	A)		
	эквивалент		
Тип выходного сигнала	сопротивления		
Поддерживаемые ряды сопротивлений, Ом *	90, 350, 800		
Полный диапазон значений сопротивления, Ом	51000		
Выход 2 (РЕЗЕРВ ТОПЛИВА)			
Тип выходного сигнала	открытый коллектор		
Максимальный коммутируемый ток по выходу, мА	не более 100		
Интерфейс UART			
Скорость передачи данных, бит/с	19200		
Четность	нет		
Стоп бит	1		
Протокол	Modbus		
Общие характеристики			
Габаритные размеры, мм	20x37x63		
Масса, кг	не более 0,07		
Время непрерывной работы	не ограничено		
Диапазон рабочих температур, °С	от -40 до +60		
Относительная влажность окружающего воздуха при температуре не более +40°С, %	не более 95		

2. Технические характеристики и условия эксплуатации

* Поддерживаемые ряды сопротивлений на выходе УКАЗАТЕЛЬ УРОВНЯ ТОПЛИВА соответствуют ОСТ 37.003.002-85

УС ДУТ аналоговый			
Наименование	Значение		
Питание			
Напряжение питания, В	1030		
Ток потребления, мА	до 200		
Характеристики аналогового вхо	ода		
Тип входного сигнала	аналоговый		
Напряжение регистрируемых сигналов на входе, В	от 0 до 10		
Характеристики выходов			
Выход 1 (УКАЗАТЕЛЬ ТОПЛИВ.	A)		
Тип выходного сигнала	эквивалент сопротивления		
Поддерживаемые ряды сопротивлений, Ом *	90, 350, 800		
Полный диапазон значений сопротивления, Ом	51000		
Выход 2 (РЕЗЕРВ ТОПЛИВА)			
Тип выходного сигнала	открытый коллектор		
Максимальный коммутируемый ток по выходу, мА	не более 100		
Интерфейс UART			
Скорость передачи данных, бит/с	19200		
Четность	нет		
Стоп бит	1		
Протокол	Modbus		
Общие характеристики			
Габаритные размеры, мм	20x37x63		
Масса, кг	не более 0,07		
Время непрерывной работы	не ограничено		
Диапазон рабочих температур, °С	от -40 до +60		
Относительная влажность окружающего воздуха при температуре не более +40°С, %	не более 95		

* Поддерживаемые ряды сопротивлений на выходе УКАЗАТЕЛЬ УРОВНЯ ТОПЛИВА соответствуют ОСТ 37.003.002-85

Наименование	Количество
УС ДУТ light	1 шт.
Руководство по эксплуатации (паспортные данные, гарантийный талон)	1 шт.
Упаковочная коробка	1 шт.

3. Комплект поставки

4. Принцип работы

УС ДУТ фиксирует частотный (аналоговый) сигнал ДУТ, согласно тарировочной таблице выполняет функцию перерасчета уровня топлива в баке в объём и на его основе формирует следующие типы сигналов для показывающих приборов (типа логометр):

1. Эквивалент сопротивления – управление стрелкой указателя уровня топлива (выход – УКАЗАТЕЛЬ ТОПЛИВА).

2. Открытый коллектор – управление лампочкой резерва топлива (выход – РЕЗЕРВ ТОПЛИВА).

Настройка УС ДУТ производится по интерфейсу UART, протокол Modbus, с помощью специализированного программного обеспечения.

Рисунок 2 – Структурная схема УС ДУТ

УС ДУТ содержит информационный светодиод зеленого цвета, который служит для контроля функционирования и первичной диагностики неисправностей (рис.3).

Рисунок 3 – Внутренняя конструкция УС ДУТ

Назначение сигналов светодиода приведено в таблице ниже.

Назначение сигналов светодиода					
Состояние	Значение светового сигнала				
Горит постоянно	Нормальное функционирование УС ДУТ. Питание включено, сигнал с ДУТ поступает.				
Не горит	Нет питания (питание ниже нормы).				
Моргает 1 раз	Логометр не подключен.				
Моргает 2 раза	Сигнал не поступает на вход.				

5. Правила эксплуатации

При установке УС ДУТ необходимо опираться на руководство по эксплуатации.

Подключение питания, сигнальных и управляющих цепей осуществляется посредством проводов выходящих из корпуса. Назначения и цвета проводов приведены на рисунке 4.

УС Д Uпит=10∗30 В; Iпотр=200м Интерфейс: UART; Протокол: MODBUS.	yT light
+ Uпит (синий) 	Fдатчика (желтый) «PE3EPB» (зеленый) Указатель топлива (фиолет.)
- Uпит (корич./белый) к ДУТ	+ Uпит (синий) - Uпит (корич./белый) к системе

Рисунок 4 – Назначение и цвета проводов УС ДУТ

ВНИМАНИЕ!!! При работе с УС ДУТ необходимо выполнять следующие ограничения:

- 1. не подавать на УС ДУТ напряжение питания, превышающее 30 В;
- 2. не допускать нарушения полярности подключаемых питающих напряжений.

Подключение УС ДУТ на транспортное средство производить в соответствии с рисунком 5.

Рисунок 5 – Схема электрических подключений УС ДУТ

Для подключения УС ДУТ необходимо:

1. Выключить зажигание машины.

2. Установить УС ДУТ в кабину транспортного средства.

3. Подключить УС ДУТ согласно схеме электрических подключений, представленной на рис. 5. Назначение и цвета проводов приведены на рис. 4.

4. Произвести запись тарировочных таблиц соответствующих данному транспортному средству в УС ДУТ (см. главу 6).

5. Проверить функционирование УС ДУТ. Для этого:

1) убедиться, что светодиод внутри УС ДУТ горит постоянно (не моргает, см. табл. «Назначение сигналов светодиода»);

2) сверить показания логометра с действительным значением уровня топлива.

6. Устройство готово к работе.

6. Настройка и конфигурирование УС ДУТ

Для настройки УС ДУТ необходимо:

1. Скачать архив с программой **BridgeToolBox** на сайте <u>www.ets-by.ru</u>, установить ПО **BridgeToolBox**.

2. Подключить УС ДУТ к ПК в соответствии с рис. 6.

Рисунок 6 – Схема подключения УС ДУТ к ПК

В качестве устройства для подключения прибора к ПК использовать универсальный сервисный адаптер УСА 2.2 (рис. 7), выпускаемый нашим предприятием (для подключения необходим кабель УСА - сумматор 14-ти контактный).

Рисунок 7 – Внешний вид УСА

Для подключения УС ДУТ к ПК необходимо:

а) снять верхнюю крышку корпуса УС ДУТ (рис. 8);

б) подключить интерфейсный кабель УСА - сумматор 14-ти контактный к разъему УС ДУТ и к УСА 2.2;

в) на УСА выбрать режим работы RS-232, TTL UART (горит первый светодиод, рис. 9, а) или RS-485, TTL UART (горит центральный светодиод, рис. 9, б).

г) через УСА 2.2. подключиться к компьютеру.

	УС ДУТ 3.00 частотн	ый	-
	Unar=10-308, Inorp=50 мА; Интерфейс: RS-232; Протокол: MODBUS,OMNICOMM;		
6	+Uпит (красный)	Едатчика (желтый)	
	Едатчика (жептый)	Указатель топлива (фиолет.)	
	-Uпит (синий)	+Uпит (красный)	
		ксистеме	
_	кдут		-
-			

Рисунок 8 – Внутренняя конструкция УС ДУТ

a) режим RS-232, TTL UART

б) режим RS-485, TTL UART

Рисунок 9 – Индикация работы УСА в режимах TTL UART

Подключение УСА к УС ДУТ				
DR	B-9F		УС ДУТ	
Контакт разъема	Назначение контакта		Контакт разъема	Назначение контакта
1	+12 B		14	Питание «+»
2	Общий		10	Питание «-»
4	Rx UART		2	Tx UART
8	Tx UART		1	Rx UART

3. Запустить программу BridgeToolBox, в меню «СОМ Порт» главного окна программы (рис. 10) указать номер последовательного порта, к которому подключен УС ДУТ.

4. Нажать кнопку [Подключить], убедиться, что связь с УС ДУТ установлена (рис. 10,1). При успешном подключении в главном окне программы (рис.10,2) появится название устройства и версия прошивки.

PridgeToolBox v2.36	-	3.00		×
1 🥣 📴 🛃 СОМ Порт 🔽 СОМ4 🔹 Отключить				
Число датчиков 2 Учатотных Прочит	ать все из ойства Записать все в			<u> </u>
Суммарный объем, % - 0.01		1.0		-
F1 = 0.0 F2 = 0.0		0.8		
Конфигурация ДУТ №1 Конфигурация ДУТ №2 Настройка выходов				
Частота, Гц Нагряжение, В Объем, л 0	Прочитать из Эстройства	8 0.6 - 9 0.4 - 0.4 -		
Добавить точку Удалить точку	Удалить все точки		<mark>⊢ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓</mark> 0.6 0.8 Частота	1.0 1.2
НПЦ ПЭА БГУИР 2010г. УС ДУТ light аналоговый. Прошивка V. 34.3				

Рисунок 10 – Главное окно BridgeToolBox

- 5. Настроить УС ДУТ для работы с показывающим прибором (п. 6.1).
- 6. Произвести конфигурирование тарировочной таблицы (п. 6.2, 6.3).
- 7. Проверить заданную конфигурацию (п. 6.4).
- 8. Настройка и конфигурирование УС ДУТ завершена.

6.1. Конфигурирование УС ДУТ для работы с показывающим прибором

(BridgeToolBox v2.36
	🗄 🚰 🛃 СОМ Порт СОМ1 🔹 Подключить
	Число датчиков 1 · · · · · · · · · · · · · · · · · ·
1-	Суммарный объем, % - 0.00
2	F1 = 0.0
	Конфигурация ДУТ №1 Настройка выходов
	Выход управления логометром
3-	🛛 📝 Включить управление логометром Тест: 1/2 бака — 7 Прочитать из
4	8 устройства
	Выход - сигнал "РЕЗЕРВ" Выходное напряжение
5-	0 Порог срабатывания в %, от общего объема 12 Максимальное выходное напряжение, В
	Рекумендуемое значение 15%
	НПЦ ПЭА БГУИР 2010г.

1. Выбрать вкладку программы «Настройка выходов» (рис. 11).

Рисунок 11 – Настройка выходов

2. Задать параметры выхода управления логометром.

В поле <u>«Выход управления логометром»</u>:

- Установить галочку в поле «Включить управление логометром» (рис.11,3);
- Выбрать необходимый диапазон сопротивления логометра. Для этого установить галочку напротив соответствующего варианта диапазона сопротивления. УС ДУТ поддерживает три диапазона: 5 90 Ом, 5 350 Ом, 170 800 Ом (рис.11,4).

▲ ВНИМАНИЕ!!! Если диапазон сопротивлений логометра неизвестен, то необходимо определить его экспериментально. Для этого следует выбрать один из приведенных в программе диапазонов и нажать кнопку [Тест: ½ бака] (рис.11,7). Если указательная стрелка измерительного прибора покажет середину шкалы, диапазон выбран правильно. Если нет – повторить операцию, выбрав другой диапазон сопротивлений. Диапазон можно задать таблицей, для этого необходимо поставить маркер напротив слова «Таблица» и нажать кнопку [...] (рис.11,8).
В появившемся окне (рис. 12) указать процентное заполнение бака топливом и соответствующее ему значение сопротивления.

			процент заполнения, % -
N	бака	Сопротивление, Ом	Сопротивление, Ом -
1	0	5	
2	10	250	Тест
3	35	320	
4	50	450	
5	100	800	
			ок
	Ţ	800	Отмена

Рисунок 12 – Задание таблицы управления логометром

3. Задать параметры выхода «РЕЗЕРВ».

В поле <u>«Выход-сигнал "РЕЗЕРВ"»</u>:

• Установить в процентах, от общего объема заполнения бака, порог срабатывания сигнала РЕЗЕРВ (рис.11,5).

4. После конфигурирования нажать кнопку [Записать всё в устройство] (рис.11,6).

6.2. Режим записи тарировочных таблиц без проливки баков

1. Разъединить подключение, если оно было установлено ранее.

2. В поле «Число датчиков» выбрать количество ДУТ=1.

3. Выбрать вкладку программы «Конфигурация ДУТ №1».

4. В поле «Частота, Гц» («Напряжение, В») ввести соответствующее объему топлива значение частоты (напряжения).

5. В поле «Объем, л» ввести соответствующее значение объема топлива.

6. Нажать кнопку [Добавить точку]. Если необходимо удалить какуюлибо точку, выбрать нужную и нажать кнопку [Удалить точку].

7. Повторить операции 4-6 для других точек.

8. После конфигурирования нажать кнопку [Записать всё в устройство].

ВНИМАНИЕ!!! Можно задать не более 30 точек.

Например. Бак рассчитан на 100 литров, выход ДУТ.Ч находится в диапазоне 500-1500 Гц. Чтобы задать пустой бак заполняем поле «Частота, Гц» - 500 Гц, а поле «Объем, л» - 0 л. Соответственно, полный бак задается как 1500 Гц – 100 л и т.д. Добавляем все требуемые точки. Справа от таблицы тарировки ПО построит график зависимости объема топлива от частоты (рис. 13).

Рисунок 13 – Пример конфигурирования ДУТ

6.3. Режим записи тарировочных таблиц с проливкой бака

ВНИМАНИЕ!!! Перед началом выполнения тарировки бак, в который установлен ДУТ, необходимо полностью опорожнить.

1. Убедиться, что в ПО установлено подключение.

2. В поле «Число датчиков» выбрать количество ДУТ=1.

3. Выбрать вкладку программы «Конфигурация ДУТ №1». В этом случае будет доступно только поле «Объем, л».

4. Пока бак пустой заполнить поле «Объем, л», поставив 0 л и нажать кнопку [Добавить точку].

5. Выбрать дозу заливки топлива в бак, залить и заполнить поле «Объем, л» соответствующим значением объема топлива.

6. Нажать кнопку [Добавить точку]. Если необходимо удалить какуюлибо точку, выбрать нужную и нажать кнопку [Удалить точку].

7. Повторить операции 3,4 для других точек.

8. После конфигурирования нажать кнопку [Записать всё в устройство].

ВНИМАНИЕ!!! Можно задать не более 30 точек.

6.4. Контроль настроек и измеряемых параметров

Контроль настроек и конфигурации

1. Подключить УС ДУТ к ПК.

2. В ПО BridgeToolBox нажать кнопку [Прочитать всё из устройства].

3. Убедиться, что управление логометром включено.

4. Проверить заданный диапазон сопротивлений.

5. Проверить значение порога срабатывания сигнала «РЕЗЕРВ».

6. Убедиться, что для ДУТ задана правильная таблица тарировки.

Контроль измеряемых параметров

ВНИМАНИЕ!!! Контроль измеряемых параметров производится на УС ДУТ с подключенным датчиком уровня топлива.

1. Подключить УС ДУТ к ПК.

2. Определить объем топлива, залитого в бак ТС.

3. В ПО BridgeToolBox нажать кнопку [Прочитать всё из устройства].

4. Для частотного УС ДУТ измеряемая частота должна быть в диапазоне 500...1500 Гц (рис. 11,2). Для аналогово УС ДУТ измеряемое напряжение должно быть в диапазоне 0...10 В (рис. 11,2).

5. Объем топлива, отображаемый в окне программы (рис. 11,1) должен соответствовать залитому в бак объему топлива.

7. Техническое обслуживание

Техническое обслуживание прибора производится обслуживающим персоналом не реже одного раза в шесть месяцев и включает в себя следующие операции:

- очистку корпуса прибора и разъемов от пыли, грязи и посторонних предметов;
- проверку качества подключения кабелей.

8. Маркировка

На прибор наносится следующая информация:

- наименование прибора и вариант его модификации;
- назначение и цвета проводов;
- наименование предприятия-изготовителя;
- год изготовления.

9. Транспортирование и хранение

Транспортирование прибора в упаковке допускается при следующих условиях:

- температура воздуха от -20°С до +75°С;
- относительная влажность воздуха не более 95% при температуре 35°С;
- транспортирование допускается всеми видами закрытого транспорта.

Хранение прибора в упаковке допускается при следующих условиях:

- температура окружающего воздуха от +5 до +40°С;
- относительная влажность воздуха не более 80 % при температуре 25°С.

ГАРАНТИЙНЫЙ ТАЛОН №

Талон действителен при наличии всех штампов и отметок

УС ДУТ light	Дата приобретения:	
Серийный номер:	Ф.И.О. и телефон поку	упателя:
Название и юридический адрес продающей организации	Подпись продавца:	Печать продающей организации

Сроки гарантии

Гарантийный срок эксплуатации со дня продажи – 24 месяца.

Условия гарантии

Гарантия действует в случае, если товар признан неисправным в связи с материалами или сборкой при соблюдении следующих условий:

1. Товар должен быть использован в строгом соответствии с руководством по эксплуатации и с использованием технических стандартов и требований безопасности.

2. Настоящая гарантия не действительна в случаях, когда повреждения или неисправность вызваны пожаром, молнией или другими природными явлениями; попаданием жидкости внутрь изделия; механическими повреждениями; неправильным использованием; ремонтом или наладкой, если они произведены лицом, которое не имеет сертификата на оказание таких услуг, а также эксплуатацией с нарушением технических условий или требований безопасности.

3. В том случае, если в течение гарантийного срока часть или части товара были заменены частью или частями, которые не были поставлены или санкционированы изготовителем, а также были неудовлетворительного качества и не подходили для товара, то потребитель теряет все и любые права настоящей гарантии, включая право на возмещение.

4. Действие настоящей гарантии не распространяется на программное обеспечение, детали отделки и корпуса, соединительные кабели и прочие детали, обладающие ограниченным сроком использования.

Свидетельство о приемке

УС ДУТ light изготовлен и принят в соответствии с обязательными требованиями государственных стандартов, действующей технической документацией и признан годным к эксплуатации.

Начальник ОТК

М.П

личная подпись

расшифровка подписи

год, месяц, число